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Abstract. The mean-field equations of a Q-state clock neural network model are derived 
in the replica-symmetric approximation using the replica method. These equations are 
studied for the cases Q = 2, 3 , 4  and Q - a. It is shown that an infinite number of patterns 
can be stored in the network even in the limit Q+co. The phase diagram and storage 
capacity of the network are calculated and the information content considered. Although 
the overlap achieved with a nominated pattern is shown to decrease as Q increases, the 
information stored in the network is shown to increase. 

1. Introduction 

In the field of neural networks there has been a great deal of research on the Hopfield 
model and related models with two-state variables (e.g. Amit et al 1985, 1987a, Lautrup 
1988, Bruce et al 1987, Canning and Gardner 1988). Recently, consideration of neural 
networks with variables with more than two states has begun (Kanter 1988, Noest 
1988). The aim of this work is to explore how the properties of a neural network vary 
when the variables have an  increasing number of states. 

One Hamiltonian with which this can be examined is an extension of the Q-state 
clock model and clock spin glass (Nobre and  Sherrington 1986): 

1 f.+--ZC cos - 27r [( ni - tf”) - (nj - 67)] 
2 N i + j  p Q 

where N is the number of sites, n, is the value of the Q-state variable at site i (n, = 0, 
1, 2 , .  . . , Q - l ) ,  and (57)  is the set of nominated configurations, or patterns, to be 
stored in the network. 

= 1,2, . . . , p ,  where p is the total number 
of nominated patterns to be stored. The nominated patterns are chosen to be random 
(i.e. 67 takes any value in the allowed set (0, 1, 2, . . . , Q - 1) with equal probability, 
1 /Q)  and uncorrelated (in the sense that Z, cos( [ t - [ : ) -O(m)  for all p # A ) .  It 
will be found useful to define a parameter a such that a = p /  N. 

The Hamiltonian (1) has the attractive feature that for Q = 2 it reduces to the 
Hopfield model. Also for Q+m, where the variable becomes continuous, it is an  
extension of the x - y  model. The Hamiltonian is invariant under the transformation 
n, + n, + k, where k is an  integer. Hence, if a configuration, 77 say, is stored, the Q - 1 
related configurations, v k ,  are also stored, where 

(2) 
In 0 2 the mean-field theory will be presented and the mean-field equations derived 

for general Q(>2). In 0 3 these equations will be solved for various values of Q for 

Each pattern is labelled by a superscript, 

v k ,  = ( 7 7 1  + k)mod Q k = l , 2 , . .  . , Q-1.  
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the case in which an intensive number of nominated patterns is stored. The following 
sections deal in detail with the specific cases Q = 3, 4 and Q + W. Phase diagrams of 
the same general struture are obtained in each case. The information content of the 
networks is also considered. Finally Q 7 contains some general comments and  con- 
clusions. 

2. Mean-field theory 

The mean-field theory is performed using the replica trick (Sherrington and Kirkpatrick 
1975), i.e. the free energy per spin, f ,  is written as 

1 f =  lim lim -- (((2" - 1))) (3) 
n - 0 N - J ;  nNp 

where (( . . . )) denotes a quenched average over the nominated patterns, [@, and p = 1/ T. 
The method used follows closely that of Amit et a1 (1987a), to be referred to as ( I ) .  
Familiarity with the ideas presented in ( I )  is assumed. For ease of notation only the 
case Q > 2 will be considered. The remaining case, Q = 2 ,  has been studied in ( I ) .  

Using y as a replica index: 
2" = Tr{,,:) exp( - p H ' )  (4) 

where 

where the first term in (5) subtracts off self-interaction terms. 
Now, using the Gaussian integral formula 

((2")) can be written as 

It can be shown within the saddle point approximation, which is imposed later, 
that a: and b: can be identified as 

where (. . .) represents a thermal average. 
These identifications allow the significance of these parameters to be determined. 

Consider the symmetry of the Hamiltonian commented upon in the introduction. 



Mean-field theory of a Q-stare neural network model 2059 

Suppose 5" is one of the nominated patterns. This nominated pattern and the Q - 1 
shifted patterns, [ t ,  defined by (2), will be stored with equal accuracy in the network. 
For a solution in which the system closely matches a nominated pattern, or a combina- 
tion of nominated patterns, the parameters b; will be of order 1 / a .  The parameters 
a: then give a measure of the overlap of the system with the nominated patterns. 
These are the only category of solutions that will be considered in this paper. If the 
overlap of the system with a shifted pattern in sought then (a;'+ bz2)  will give a 
measure of the overlap and a: and b: must be considered to determine which of the 
shifted patterns is involved. 

Assume that for a finite number of the nominated patterns, v, a;  is of order 1. 
These a;  will be called macroscopic. There then remains an extensive number of 
microscopic overlaps, i.e. a;  - O( 1 / a ) ,  for p > v. The nominated patterns with 
microscopic overlap will also have b: microscopic. The mean-field theory then 
procedes in an entirely analogous manner to that contained in ( I )  to give 

where ((, . ,))" denotes a quenched average over the remaining patterns, [,, p < v. 
In this paper only replica-symmetric solutions will be considered, i.e. 

a; = a, 
b; = b, 

ryE = r,, = r 

q Y E  = q E Y  = 

where y # E.  

transformations made to allow the trace to be taken, giving 
Now the remaining trigonometric functions can be expand 

>>, dz dz' 
x e x p n 4 J  IF exp( -fz2)exp( - t z t 2 )  In x 

d and WO Gaussian 
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where 

2 rn 
X =Tr, exp A cos -+ B sin- 

( Q  Q 

with 

c’ =cos 2ir[”/Q sg = sin 27~5*/Q n = 0 , 1 ,  . . . ,  Q-1 .  

Hence X completely contains the dependence upon Q (for Q > 2).  
Evaluating the integrals by the method of steepest descents taking the thermo- 

dynamic limit and letting n + 0 in the same way as in ( I ) ,  the free energy per spin is 
found to be 

1 “  a par P4 
f =  2 2 ( a t  + b t )  +-+- ( 1  - q )  In[ 1 - f P ( l -  q ) ]  - 

, = I  2 8  

exp( -iz*)exp(-iz”)ln x 
27T 

The mean-field equations then follow from the saddle point conditions 

They are 

2q 
[ 1 - $ ( 1  - q ) ] ’ ‘  

r =  

Applying the saddle point conditions before the replica-symmetric ansatz is taken, 
the order parameters can be identified, yielding in addition to (7)  and (8), 
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0.96 3 

U 0.94 - 

Having derived the general mean-field equations, (20 ) - (23 ) ,  the remainder of the 
paper will consider their solution for various cases. First the limit (Y = O  will be 
discussed. This is the case in which an intensive number of nominated patterns is 
stored. Then the storage of an extensive number of patterns will be considered for 
the cases Q = 3, 4 and Q +  CO. 

I 

‘5, 

’: 

3. Storage of an intensive number of patterns 

In all that follows only solutions with a, = 0 for p = 2 ,  3 , .  , . , v and b, = 0 for all p 
will be considered. These include the true memory or retrieval states. 

In the limit a + 0 

In this limit the mean-field equations reduce to one equation for the order parameter 
a ,  = a. For example, 

Q = 2: a = tanh pa (28 )  

Q = 3 :  8 c - s  4 

Q = 4: a = tanh p a / 2  (30) 

a 

Temperature 

Figure 1.  Plot of the overlap, a, as a function of 
temperature at a = 0 for Q = 2, 3, 4 and Q -, CO. 

0 0.05 0.10 0.15 0.20 0.25 0.30 

a 

Figure 2. Plot of the overlap, a, as a function a at 
zero temperature for the cases Q = 2, 3 and Q + m. 
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The equations are solved to give the overlap, a, as a function of temperature, T (see 
figure 1). The curves are all of similar shape. In the limit T-,  0, the overlap tends to 
unity. For the case Q = 2, the overlap is non-zero for T < 1. For all other cases the 
overlap vanishes at T = 0.5. This occurs because for Q = 2 the mean value of cos 27rn/ Q 
(n  = 0, 1 , .  . . , Q - 1) is 1, whereas for all Q >  2 it takes the value 0.5. At any given 
temperature the overlap is seen to decrease as Q increases. 

4. Storage of an extensive number of patterns: Q = 3  

For the case Q = 3 it can be shown that 

X = i l n  2cosh-B +In 2cosh --i ln 2cosh- ( ; ) I [3: ( 3 1 1  (32) 

where the terms that average to zero when integrals over z and z‘ or when quenched 
averages are carried out have been ignored. This leads to the mean-field equations 

exp(-iz2) exp(-fz’2) Ac - s tanh - 2 
dz dz’ 

x tanh[ y -i In( 2 cosh ?)I})) 
exp( -iz2) exp( -4z”) 

b =“(I[- dz dz’ 
’ ” 4  277 

x tanh[ y-i In( 2 cosh ?)I})) 
exp(-fz2) exp( +z”) 

f i z  - z’ tanh - 

277 

2 

n tanh[y- ; ln(2  cosh?)]})) 

The solution of the mean-field equations for the three-state model, (33)-(36), will 
now be discussed, first in the low-temperature limit and then for general temperature. 

4.1. The low-temperature limit 

In the limit, T-,  0, the mean-field equations simplify somewhat. q tends to 1 and the 
problem reduces to solving one non-linear equation in the variable y ,  where y = a/,&. 
This is just as occurred in the same limit in the Hopfield model (see (I))  and will be 
the case for all Q. 
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where 

f , ( y )  =6[1 -e r f ( f iy) ]+  12 exp(-5y2)[1+erf(y/d?)] ( 3 8 )  

with 

z,=2 - y s + -  -yc (A ;I 1 
Non-zero solutions of equation (37 )  are found for a less some critical value, ac,  

found to be 0.22. This compares with a, = 0.138 in the case Q = 2. The trivial solution 
y = 0 exists for all a. The variation in overlap, with a for stable solutions of (37) is 
shown in figure 2. At the critical storage the overlap takes a value of 0.978, compared 
with 0.968 at critical storage in the Hopfield model. 

4.2. The phase diagram 

The mean-field equations (33)-(36) can be solved numerically for any value of a and 
temperature. The stability of solutions is determined by calculating the eigenvalues 
of the matrix (of order 0) of second derivatives of the free energy with respect to the 
order parameters. Consideration of the solutions and their stability with respect to 
replica-symmetric fluctuations allows the construction of the phase diagram, figure 3. 
The stability of the solutions with respect to replica-symmetry-breaking fluctuations 
has not been considered. 

a 

Figure 3. Phase diagram for Q = 3. 

0.20 
?. : 
; 0.15 
E 

- 0.10 
P 

0.05 

0 

a 

Figure 4. Plot of the information content of the 
networks with Q = 2 ,  3,  4 against LI at zero 
temperature. 
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Above the line Tsg the system is paramagnetic (i.e. a = b = q = r = 0). Along Tsg 
there is a second-order transition to the spin-glass state in which a = b = 0, q f 0, r # 0. 
Tsg is given by 

Tsg = 4 + &/ 2. (40) 

Below the line T,,, the memory states, ( a  # 0, b = 0 ,  r # 0, q # 0), become stable 
discontinuously. Below T, the memory states have a lower free energy than the 
spin-glass states. The phase diagram is of very similar form to that of the Hopfield 
model, see (I). 

4.3. Information content 

To measure the amount of the information stored in the network, account must be 
taken not only of the overlaps achieved, but also of the number of states of the variables. 
Using the same procedure for evaluating information content as Amit et al (1987b), 
the information stored in the three-state network can be shown to be given by 

Information stored = aN2 [ y  -In ( : ~ ~ ) + i l n [ ( l - a ’ ) ( 1 + 2 a ) l  - 1 . 
A plot of the information stored against a is shown in figure 4. The maximum 
information content for Q = 3 is 0.22N2. This can be seen to be much higher than the 
maximal information content of the Hopfield model, which is only 0.09N2. 

5. Storage of an extensive number of patterns: Q = 4  

Q = 4 is a special case as the model decomposes into two Q = 2 models. Hence, the 
storage capacity, a,  = 0.138, is the same as for the Hopfield model. The phase diagram 
is the same as that for the Hopfield model (see (I)  or Lautrup 1988), but with the 
temperature rescaled by a factor of 0.5. 

Although the mean-field equations at zero temperature are identical for Q = 2 and 
Q = 4, a four-state variable carries intrinsically more information than an Ising variable 
and so the information content, as shown in figure 4, is much higher for Q = 4. 

6. Storage of an extensive number of patterns: Q + 00 

In the limit that Q + CO the variables become continuous. To determine the mean-field 
equations for this case the quantity X given by (15)  must first be calculated: 

2 T n  A cos -+ B sin X = Tr, exp 
( Q  

In the limit that Q + CO: 

X = Q ~ 0 2 T e x p ( A c o s y + B s i n g )  27T dy (42) 

(43) 

i.e. 

x = QI~JA~+ B ~ ) .  
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The mean-field equations can then be shown, for the category of solutions considered, 
to be 

dzdz' 
P ( l - q ) = + = ( (  J (i- 27T exp(-fz2) exp( -+zt2) 

where D = J A ~ +  BZ and D' = DIP. 
The following subsections consider the solution of these mean-field equations. 

6.1. The low-temperature limit 

In the limit that T+O the equations reduce to the non-linear equation 

Y f i ( Y  1 + 2 T Y f i  -f1 (Y ) = 0 (47) 

where 

(cz+sz'+2y) 
[(z+2yc)2+(z'+2ys)2]~'z 

( zz + ZfZ  + 2y( cz + sz')) 
[ (z  + 2yc)Z-t ( z ' +  2ys)2]"2 

f l ( y )  =((i (i dz dz'exp(-&z2) exp(-izf2) 

h ( y )  = ((i dz dz' exp( -izz) exp( -iz") (49) 

The stable solutions of equation (47) can be seen in figure 2. The critical value of a 
is 0.038 and at this point the overlap is 0.899. 

The information stored in the network is given by 

Information stored = lim a a N 2  In Q. (50) 
Q+m 

So, below a, = 0.038, the information content of the network is infinite. 

6.2. Phase diagram 

Figure 5 shows the phase diagram resulting from the mean field equations (44)-(46). 
The line T, has not been drawn as it proved difficult to locate the spin-glass solutions 
at these small values of a with the numerical techniques used. The paramagnetic to 
spin-glass transition occurs along the same line as for Q = 3 ,  as noted in 9 4. The 
general structure of the diagram is very similar to that of the Hopfield model and that 
derived in § 4. 
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0.40 I\ 

0 0 01 0.02 0.03 0.04 

a 
Figure 5. Phase diagram for Q + S. 

7. Concluding remarks 

Using the replica trick the mean-field equations for the clock neural network have 
been derived in the replica-symmetric approximation. These have been solved for 
non-zero overlap with one nominated pattern only for the cases Q = 2,  3, 4 and for 
the continuous variable. 

From figure 1 it seems that as the number of states of the variables increases at 
given a and temperature, the overlap decreases, so the retrieval of the nominated 
pattern is poorer. However, when information content is considered, it has been shown 
that the increase in the number of states of the variables more than outweighs any 
decrease in the overlap and the information content is seen to increase with Q for 
given a (less than (Y =0.038). 

It has been shown that storage is still possible for the case Q+w. However the 
storage capacity falls from 0.138 for Q = 2 and 0.266 for Q = 3 to a value of 0.038. 

Mixture states (i.e. those with non-zero overlaps with more than one pattern) have 
not been considered. It may be interesting to find out whether any symmetric mixture 
states are stable for this model. Symmetric mixture states with non-zero overlaps with 
an odd number of nominated patterns have been shown to be stable for the Hopfield 
model (Amit et a1 1985) and so should also be stable for the case Q = 4. However, 
for a Potts-type model Kanter (1988) found that symmetric mixture states were not 
stable. 

Lastly, this paper has been confined to replica-symmetric solutions. Calculation 
of the entropy at zero temperature for the cases Q = 2,  3 ,  4 gives a negative entropy. 
This indicates that at least in these cases replica-symmetry breaking is occurring. In 
the cases considered the entropies calculated for the memory states were small, of the 
order of -0.001. This means that the effects of replica-symmetry breaking on the 
memory states will be small. A detailed consideration of replica-symmetry-broken 
solutions may be interesting, especially as there is unusual behaviour in the broken 
symmetry states of the three-state clock glass (Nobre and Sherrington 1987, Elderfield 
and Sherrington 1983, Gross et a1 1985). 
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